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A qualitative study of flow regimes as a function of the sweep X, the Mach number Mo., and the angle of attack ~ under 

supersonic flow over delta wings with a sharp leading edge was carried out experimentally in [1, 2]. The effect of  the angle of 

attack on the turbulent-laminar transition was studied in [3, 4]. It was shown that the transition for triangular plates with X = 

60-75 ~ accelerates for c~ < 10 ~ and is delayed for r > 15 ~ In [5] the Stanton numbers were measured on the upwind side of 

delta wings for X = 65, 70 ~ ~x = 0-15 ~ M~. = 6.1 and 8. The results of the calculations of  laminar and turbulent boundary 

layers on a flat delta wing are given in [6]. 

Using the algorithm from [7, 8], below we carry out calculations for the compressed turbulent boundary layer on the 

upwind side of flat and profiled delta wings for M~, > 1. The parameters of the laminar-turbulent transition were chosen from 

a comparison of  the distribution of  the Stanton numbers with the experimental results [5]. We also study the effect that the 

determining parameters of  the problem have on the distribution of  local and overall surface friction coefficients. 

1. We consider the turbulent boundary layer on a profiled delta wing, whose leading edge has a sweep X. Its surface 

y = G(x, z) is given in Cartesian coordinates x, y, z with origin at the nose of the wing. The plane z = 0 coincides with its 

symmetry plane. The leading and trailing edges of the wing lie in the plane y = 0; z = f(x) is the equation of the leading edge. 

The velocity vector of the mainstream lies in the vertical symmetry plane of the wing and makes an angle of attack c~ with the 

x axis. 

To describe the boundary layer we introduce a nonorthogonal system of coordinates (~, 71, ~'), bound to the surface of 
the body: 

= x ,  ~ = 1 - z / l  ( x ) .  

Here the coordinate ~" is reckoned from the leading edge in the section ~ = const; ~/ is the normal to the surface. The 

components u, v, w correspond to the coordinates ~, ~/, ~'. The complete equations of  the compressed boundary layer in the 

variables ~, X, ~', where k = 7//~~- and the boundary conditions for the region 9 (~ >__ ~o, 0 < ~" < ~'~, 0 ~ X < Xe(~, ~')) are 
written out in [7, 8]. 

The section ~ = ~o is given at the conical nose of the body and the profiles u o, Wo, T O are taken from the self-similar 

solution for the nose. At the leading edge (~" -- 0) the profiles u~, w~, T~ are determined from the solution of the ordinary 

differential equations obtained from the complete equations of the boundary layer by the passage to the limit ~" --, 0 on the 

assumption that all the sought functions and their derivatives are bounded. The usual attachment conditions for a viscous fluid 

and given at the surface of  the body (X = 0) and the gas and the wall are assumed to be at the same temperature T = T w. At 

the outer boundary (k = ~(~,  ~)) the parameters of  the boundary layer are taken from calculations of the flow of nonviscous 

gas over the wing. The results given below were calculated for X = 70* by taking the data obtained by the method of  [9] and 
those for X = 450 by taking data from [10]. 

The turbulent viscosity coefficient/zt was added to the molecular viscosity coefficient t~ in the turbulent flow calculation. 

The heat-conduction coefficient k was changed in similar fashion. The overall viscosity and heat-conduction coefficients are thus 

calculated from 
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P z = l  x+s k z - - ~ r  Ft Ix ' 

where Pr and Pr I are the molecular and turbulent Prandtl numbers; r is the laminar-turbulent transition coefficient, which is 

determined by the dependence of  the Reynolds number on the ma in~eam parameters and the momentum thickness R%.. on the 
local Mach number M e [11]: 

{~ if r < r t ,  

l~ = ' - -  exp  ( - 6 , 5  ( ( r  - r l ) / ( r ,  - rl))2), i f  r >rt .  

Here r = Re6,,/ex p (0.2 Me); the values of  r I and r 2 correspond to the onset and end of the transition. 

For the calculation of turbulent flow the value of ~ was set on the basis of the hypothesis of  the displacement path length 
in the form 

~t=p: +.~ +2~cos~, 

where I is the displacement path length; ~, is the angle between the ~ and ~" axes; and p is the density. In our study we use an 

algebraic model of  turbulent viscosity, i.e., the model of Michel [12] with the following expression for the displacement path 

length: 

l / b  = 0,09 t h  [0,435/0,09 (y/b) IF, F = 1 - exp [ -  ~ ) .  
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Here F is the Van Drist damping factor in the boundary region;/~ is the thickness of  the boundary layer; r w is the length of the 

viscous stress vector on the wall. Elsewhere [13] we showed that the turbulence models of  Michel [12], Cebeci and Smith [14], 

and Pletcher [15] give similar values of the viscous stress for the boundary layer on an oval-cylindrical body. 
The system of boundary layer equations was solved numerically by means of  the implicit difference scheme described 

in [16]. The following computational algorithm was used to solve the difference equations. First, the self-similar boundary large 
on the conical part was calculated by the march method over the ~" coordinate [7]. The resulting values of the gasdynamic 

parameters Uo, w o, T O were assigned as the initial conditions in the section ~ = Go on the conical section. Then, using the march 
method over the ~ method, we solved the three-dimensional boundary-layer equation on the rest of  the wing surface. 

The velocity and temperature components calculated in the boundary layer of the sections were used to calculate the 

components of  the friction stress coefficients e% and el2 and the Stanton number on the wing surface. The formulas for them 

are given in [8, 17]. Since these parameters become infinite at the leading edge, we henceforth give ~f = cf4~ and gt = 

S t Y .  We also determined the contribution of  the friction forces CF x and CFy to the coefficients of the longitudinal and normal 
aerodynamic forces acting on the wing. The formulas for them are given [8, 17]. 

2. The algorithm and the computational program were verified by comparing the calculated values of  ~t on the upwind 

side of flat wings with the experimental values [5]. Table 1 shows the variants for which this comparison was made in the section 

z = 0.25b, parallel to the symmetry plane of the flow, where b is half the wingspan. Here for both wings M** = 6.1 and the 
wall/mainstream temperature ratio Tw/T** = 4.39, which corresponds to a relative enthalpy Hw/H~. = 0.535. The last columns 
give the values of  the parameters of the beginning and the end of the transition r 1 and r 2, chosen from the condition of best 
agreement of  the Stanton numbers with the experimental values. The distributions of ~t in this section for wings with sweep X = 

65 ~ are given in Fig. 1 and with X = 700, in Fig. 2. Curves 1 and 2 in Fig. 1 represent calculations for a = 5, 10 ~ and 

Reynolds number Re L = 1.38.107 (here Re L was calculated from the mainstream parameters and the length of the center chord 
L); corresponding to them are the triangles and circles, indicating data from [5]. Curve 3 and the small squares pertain to the 

variant for t~ = 10" and Re L = 4.73.106. Figure 2 shows the results for o~ = 5* and Re L = 1.59.107 (curve I and circles) 
and Re L = 5.5"106 (curve 2 and triangles). As seen from Figs. 1 and 2, the calculated and experimental data differ by less 
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than 15% in the turbulent-flow region. The dashed lines in Figs. 1 and 2 represent the results of  calculations in [5] by the theory 

of plane sections. As mentioned in [5], the difference between the calculated and experimental Stanton numbers reaches 20%. 

The correct choice of  r I and r e is important for best agreement with experiments. It is not clear beforehand, however, 

what that choice should be in one case or another. Accordingly, three variants of calculations were carried out with different 

values of these parameters" (Table 2) for a wing when X -- 65", M** = 6, ~ = 10", Re L = 4.73-106, Tw/T= = 4.39. In the 

fast variant we chose r 1 and r e from the condition of best agreement of  the distribution of  ~t with experimental data, in the 

second we took their average values for a series of  calculations (see Table 1), and in the third we took values slightly out of 

their range in Table 1. As is seen from Table 2, the value of the overall coefficient CF x in the second variant differs from the 

first by 6%, while in the third it differs by more than 30%. In calculations of the boundary layer on the upwind side of a della 

wing for parameters close to those in Table 1, therefore, the average can evidently be taken for the transition parameters: r I -- 

150 and r 2 = 350. Just such values were used in subsequent variants. 

3. We have done a number of calculations here to ascertain the effect of  the determining parameters on a turbulent 

boundary layer. The values of  the latter for the main variants calculated are given in Table 3 for Re L --- 1.5" 107 and Hw/H= = 

0.535. For profiled wings the equation of  the surface has the form 

a (~,  ; )  = 4c  ( l  - (1 - ; )2 )  ( l  - ~ ) ~ 7 ,  

where c is the relative thickness of the profile [10]. All the calculations were done with a single program, which worked 

successfully for regime A1, when the shock wave is attached to the leading edges, and for regime B1 with detached shock wave, 

when the dividing streamline comes at the leading edge [18]. 

Figures 3-6 show the distributions of  the local friction coefficient ~f as a function of  the parameter o: = 1 - ~', which 

corresponds to the relative distance from the symmetry plane in the wing cross section. The development of  the boundary layer 

by sections is clearly visible in Fig. 3, where the dism'bution of  ~f is given for ~ = 0.2, 0.4, and 1.0 (curves 1-3) for X = 70", 

M** = 8, ~ = 5", and e = 0. The transition to turbulent flow begins here near the symmetry plane and, moving to the trailing 

edge, extends to practically the entire wing surface. The flow remains laminar in the vicinity of  the leading edges, as it should. 

With increasing Math number the transition to turbulent flow is delayed and the region of  turbulent flow decreases. This 

is seen clearly from Fig. 4, which shows the distribution of  df on the wing surface in the section ~ = 0.5 for X = 70", a = 
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5*, c = 0, and M~. = 4, 6, 8 (curves I-3). The region of laminar is very small here for M~. = 4. We also see that the absolute 
values of r decrease as the Mach number increases. All of this supports our earlier results for Re L = 2.106 [8]. 

The effect of  the angle of attack on the boundary-layer parameters is illustrated in Fig. 5 for a flat wing with X = 70 ~ 

and in Fig. 6 for flat (solid lines) and prof'ded (dashed lines) wings with X = 45 ~ Curves 1-3 in both figures correspond to ~ = 

0.5 and o~ = 0, 5, 10 ~ and curve 4 (Fig. 5) corresponds to c~ = 15 ~ The graphs indicate that df is a monotonic function of the 

angle of attack. The region of  turbulent flow increases with the angle of attack and the zone of  the transition shifts to the nose 

of the wing. Regime B1 is realized for X = 70* and c~ = 10, 15 ~ (curves 3, 4 in Fig. 5) and the region of  laminar flow near 

the edges is very small. 

For a flat wing with X = 45 ~ (Fig. 6, solid curves) the values of de near the symmetry plane virtually coincide with 

their values for the wing with X = 70*. The region of laminar flow at the leading edges, however, is larger in this case. 
Comparing the df distributions for flat and profiled (dashed lines) wings for different angles of  attack, we come to the 

conclusion that the region of  turbulent flow is larger in the second case. The absolute value of  de in this region, however, is 

slightly lower, as is particularly noticeable for ct = 10" (curves 3). 

In conclusion we analyze the contribution of the total friction forces CF x on the upwind side to the coefficient of the 

longitudinal aerodynamic force CF. Their values are given in the last two columns of Table 3. When the sweep of the flat wing 

is increased from 45 ~ to 70 ~ the coefficient CF x increases slightly (3-7%) for all angles of attack, which is consistent with the 

analogous dependence for a completely laminar boundary layer on the wing [18]. The value of  CF x decreases by 37% when the 

Mach number grows from 4 to 8 for X = 70 ~ and ct = 5*. 

As in the case of a completely laminar boundary layer [17], CF x is slightly higher on a profiled wing than on a flat 
wing. Although the difference does decrease from 5 to 1% as the angle of attack increases, the wave resistance grows 

substantially and as a result the contribution of CF x to the total resistance of the wing with X = 450 decreases from 100 to 43% 

for o~ = 0, from 23 to 17% for c~ = 5 ~ and from 11 to 9% for ct = 15". 

In summary, in this study we have analyzed the effect of the determining parameters of  the problem on the local and 

overall friction coefficients on the surface of a delta wing. 
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